Phosphorylation of gamma-aminobutyrate (GABA)/benzodiazepine receptors by cyclic AMP-dependent protein kinase.
نویسندگان
چکیده
Preparations of gamma-aminobutyrate (GABA)/benzodiazepine receptor from pig cerebral cortex are composed of three major bands of polypeptides (51, 55 and 57 kDa) which are purified in a ratio of approx. 2:1:1 respectively. Treatment of purified receptor preparations with cyclic AMP-dependent protein kinase resulted in major incorporation of 32P into the 55 kDa band only. The maximum incorporation achieved was 0.6 mol of 32P/mol of 55 kDa polypeptide. The phosphorylated receptor subunit (beta-subunit) displays the same apparent Mr as a band labelled irreversibly with the GABA receptor agonist [3H]muscimol. The two nonphosphorylated subunit polypeptides (51 and 57 kDa) are each labelled irreversibly with [3H]flunitrazepam and are recognized by anti-peptide antibodies specific for alpha-subunits.
منابع مشابه
A-kinase anchoring protein 79/150 facilitates the phosphorylation of GABA(A) receptors by cAMP-dependent protein kinase via selective interaction with receptor beta subunits.
GABA(A) receptors, the key mediators of fast synaptic inhibition in the brain, are predominantly constructed from alpha(1-6), beta(1-3), gamma(1-3), and delta subunit classes. Phosphorylation by cAMP-dependent protein kinase (PKA) differentially regulates receptor function dependent upon beta subunit identity, but how this kinase is selectively targeted to GABA(A) receptor subtypes remains unre...
متن کاملgamma-Aminobutyric acid inhibits cholangiocarcinoma growth by cyclic AMP-dependent regulation of the protein kinase A/extracellular signal-regulated kinase 1/2 pathway.
We studied the effect of the inhibitory neurotransmitter, gamma-aminobutyric acid (GABA), in the regulation of cholangiocarcinoma growth. We determined the in vitro effect of GABA on the proliferation of the cholangiocarcinoma cell lines (Mz-ChA-1, HuH-28, and TFK-1) and evaluated the intracellular pathways involved. The effect of GABA on migration of Mz-ChA-1 cells was also evaluated. In vivo,...
متن کاملCyclic AMP-dependent protein kinase decreases GABAA receptor current in mouse spinal neurons.
GABA, the major inhibitory neurotransmitter in the mammalian brain, binds to GABAA receptors, which form chloride ion channels. The predicted structure of the GABAA receptor places a consensus phosphorylation site for cAMP-dependent protein kinase (PKA) on an intracellular domain of the channel. Phosphorylation by various protein kinases has been shown to alter the activity of certain ligand- a...
متن کاملP146: Gamma Aminobutyric Acid (GABA) and its Alterations in Stress
Gamma aminobutyrate (GABA) is a non-protein amino acid that is thought to play an important role in the modulation of the central response to stress. Mechanisms by which GABA may facilitate these responses to stress are metabolic and/or mechanical disruptions. Environmental stresses increase GABA accumulation through cytosolic acidification, induce an acidic pH-dependent activation of glutamate...
متن کاملGABAA receptor phospho-dependent modulation is regulated by phospholipase C-related inactive protein type 1, a novel protein phosphatase 1 anchoring protein.
GABA(A) receptors are critical in controlling neuronal activity. Here, we examined the role for phospholipase C-related inactive protein type 1 (PRIP-1), which binds and inactivates protein phosphatase 1alpha (PP1alpha) in facilitating GABA(A) receptor phospho-dependent regulation using PRIP-1-/- mice. In wild-type animals, robust phosphorylation and functional modulation of GABA(A) receptors c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 259 2 شماره
صفحات -
تاریخ انتشار 1989